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Abstract

The literature regarding the free vibration analysis of single-span beams carrying a number of spring–mass systems is

plenty, but that of multi-span beams carrying multiple spring–mass systems is fewer. Thus, this paper aims at determining

the ‘‘exact’’ solutions for the natural frequencies and mode shapes of a uniform multi-span beam carrying multiple

spring–mass systems. Firstly, the coefficient matrices for an intermediate pinned support, an intermediate spring–mass

system, left-end support and right-end support of a uniform beam are derived. Next, the numerical assembly technique for

the conventional finite element method is used to establish the overall coefficient matrix for the whole vibrating system.

Finally, equating the last overall coefficient matrix to zero one determines the natural frequencies of the vibrating system

and substituting the corresponding values of integration constants into the related eigenfunctions one determines the

associated mode shapes. In this paper, the natural frequencies and associated mode shapes of the vibrating system are

obtained directly from the differential equation of motion of the continuous beam and no other assumptions are made,

thus, the last solutions are the exact ones. The effects of attached spring–mass systems on the free vibration characteristics

of the 1–4-span beams are studied.

r 2007 Elsevier Ltd. All rights reserved.
1. Introduction

The free vibration characteristics of a uniform beam carrying various concentrated elements (such as point
masses, rotary inertias, linear springs, rotational springs, spring–mass systems, etc.) is an important problem
in engineering, thus, a lot of reports have been published in this area. In Refs. [1–3], various techniques were
presented to perform the free vibration analysis of beams carrying one or two concentrated elements. Wu et al.
have found natural frequencies and mode shapes of a uniform beam carrying any number of rigidly attached
point masses [4] and elastically attached point masses [5] by means of the analytical-and-numerical-combined
method. Cha [6] solved the natural frequencies of a linear structure carrying any number of spring–
mass systems using the assumed-modes method. Naguleswaran [7] found the natural frequencies of
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a Euler–Bernoulli beam with up to five elastic supports (including ends) using a fourth-order determinant
equated to zero. By means of the Lagrange multipliers method, Gurgoze et al. [8–10] solved the
eigenfrequencies of a cantilever beam with attached tip mass and a spring–mass system and studied the
effect of an attached spring–mass system on the frequency spectrum of a cantilever beam. Furthermore, using
the assumed modes method, they presented two alternative formulations of the frequency equation of a
Bernoulli–Euler beam to which several spring–mass systems being attached in-span and then solved for the
eigenfrequencies. Wu and Chou [11] obtained the exact solution of a single-span uniform beam carrying any
number of spring–mass systems using the numerical assembly method (NAM).

From the above literature review one sees that the exact solutions for the natural frequencies and mode
shapes of the ‘‘single-span’’ beams carrying either single or multiple spring–mass systems have been obtained
[5,10,11]. However, the literature regarding the exact solutions for the natural frequencies and mode shapes of
the ‘‘multi-span’’ beams carrying either single or multiple spring–mass systems have not yet been found. In
Refs. [12,13], Gurgoze and Erol studied the forced vibration responses of a cantilever beam with single
intermediate support, but they did not study the free vibration characteristic of the beam. In Refs. [11], Wu
and Chou determined the exact natural frequencies and mode shapes of a ‘‘single-span’’ uniform beam
carrying any number of spring–mass systems using the NAM. The present paper adopts the same method to
investigate the free vibration characteristics of the ‘‘multi-span’’ uniform beam carrying multiple spring–mass
systems.

2. Equation of motion and displacement function

Fig. 1 shows the sketch of a uniform beam supported by T pins (including those at the two ends of beam)
and carrying S spring–mass systems. If each of the points that the T pinned supports or the S spring–mass
systems located is called a ‘‘station’’, then the total number of stations is N ¼ S+T. For convenience, three
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Fig. 1. Sketch for a uniform beam supported by T pins and carrying S spring–mass systems and the definitions for coordinates:

xv0 ðv
0 ¼ 1�NÞ for stations, x�pðp ¼ 1�SÞ for spring–mass systems and x̄rðr ¼ 1�TÞ for pinned supports.
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kinds of coordinates are used as one may see from Fig. 1. The positions for the stations are defined by
xv0 ðv

0 ¼ 1�NÞ, those for the spring–mass systems by x�pðp ¼ 1�SÞ and those for the pinned supports by

x̄rðr ¼ 1�TÞ. It is obvious that x10 ¼ x̄1 ¼ 0 and xN 0 ¼ x̄T ¼ ‘, because the first (left-end) support is at the
origin of the coordinates and the final (right-end) support is at the other end of the beam with total length ‘.
For convenience, in Fig. 1, the numbers 10, 20, y, v0, y, N0�1 and N0 above the x-axis refer to the numbering
of stations, while the symbols of 1, 2, y, p, y, and S, and those of (1), (2), y, (r), y, and (T), below the
x-axis refer to the numbering of spring–mass systems and pinned supports, respectively. It is noted that the
support numbers are enclosed in parentheses ( ), while the spring–mass system numbers are not.

For a uniform Euler–Bernoulli beam, its equation of motion is given by

EI
q4yðx; tÞ
qx4

þ m̄
q2yðx; tÞ

qt2
¼ 0, (1)

where E is Young’s modulus, I is moment of inertia of the cross-sectional area, m̄ is mass per unit length of the
beam, y(x,t) is transverse deflection of the beam at position x and time t.

For the pth spring–mass system, its equation of motion is given by

mp €zp þ kpðzp � ypÞ ¼ 0, (2)

where mp and kp denote the point mass and spring constant of the pth spring–mass system, respectively, zp and
€zp denote the displacement and acceleration of the pth spring mass (mp) relative to its static equilibrium
position, respectively, while yp is the transverse displacement of the beam at the attaching point of the pth
spring–mass system (cf. Fig. 1).

When the whole vibrating system shown in Fig. 1 performs harmonic free vibration, one has

yðx; tÞ ¼ Y ðxÞejōt (3)

and

zpðtÞ ¼ Zpe
jōt, (4)

where Y(x) and Zp are the amplitudes of y(x, t) and zp(t), respectively, ō is the natural frequency of the whole
vibrating system and j ¼

ffiffiffiffiffiffiffi
�1
p

.
The substitution of Eq. (3) into Eq. (1) gives

Y 0000 � b4Y ¼ 0, (5)

where

b4 ¼
ō2m̄

EI
(6a)

or

ō ¼ ðb‘Þ2
EI

m̄‘4

� �1=2

. (6b)

The solution of Eq. (5) takes the form

Y ðxÞ ¼ C1 sin bxþ C2 cos bxþ C3 sinh bxþ C4 cosh bx. (7)

This equation is the displacement function for each beam segment between any two adjacent stations of the
multi-span beam shown in Fig. 1.

3. Determination of natural frequencies and mode shapes

For an arbitrary point located at xv0 (cf. Fig. 1), from Eq. (7) one obtains

Y v0 ðxv0 Þ ¼ Cv0;1 sin Oxv0 þ Cv0;2 cos Oxv0 þ Cv0;3 sinh Oxv0 þ Cv0;4 cosh Oxv0 , (8)

Y 0v0 ðxv0 Þ ¼ OCv0;1 cos Oxv0 � OCv0;2 sin Oxv þ OCv0;3 cosh Oxv0 þ OCv0;4 sinh Oxv0 , (9)
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Y 00v0 ðxv0 Þ ¼ �O
2Cv0;1 sin Oxv0 � O2Cv0;2 cos Oxv0 þ O2Cv0;3 sinh Oxv0 þ O2Cv0;4 cosh Oxv0 , (10)

Y 000v0 ðxv0 Þ ¼ �O
3Cv0;1 cos Oxv0 þ O3Cv0;2 sin Oxv0 þ O3Cv0;3 cosh Oxv0 þ O3Cv0;4 sinh Oxv0 (11)

with

xv0 ¼
xv0

‘
, (12)

O ¼ b‘. (13)

If the left-end support (i.e., station 10) of the beam is pinned as shown Fig. 1, then the boundary conditions
are

Y 10 ð0Þ ¼ Y 0010 ð0Þ ¼ 0, (14a,b)

where the primes refer to differentiations with respect to the coordinate x.
From Eqs. (8), (10) and (14), one obtains

C10;2 þ C10;4 ¼ 0, (15a)

�C10;2 þ C10;4 ¼ 0 (15b)

or in matrix form

½B10 �fC10 g ¼ 0, (16)

where

1 2 3 4

½B10 � ¼
0 1 0 1

0 �1 0 1

" #
1

2
, ð17Þ

fC10 g ¼ fC10;1 C10;2 C10;3 C10;4g. (18)

If the station numbering corresponding to the pth intermediate spring–mass system is represented by p0,
then the continuity of deformations and equilibrium of moments and forces require that

Y L
p0 ðxp0 Þ ¼ Y R

p0 ðxp0 Þ, (19a)

Y 0
L
p0 ðxp0 Þ ¼ Y 0

R
p0 ðxp0 Þ, (19b)

Y 00
L
p0 ðxp0 Þ ¼ Y 00

R
p0 ðxp0 Þ, (19c)

Y 000
L
p0 ðxp0 Þ þmp=EIō2Zp � Y 000

R
p0 ðxp0 Þ ¼ 0 (19d)

with

xp0 ¼
xp0

‘
; m̂p ¼

mp

m̄‘
. (19e,f)

In Eqs. (19a)–(19d), the superscripts ‘‘L’’ and ‘‘R’’ refer to the left side and right side of station p0,
respectively.

The substitution of Eqs. (3) and (4) into Eq. (2) gives

kpY p0 � ðkp �mpō2ÞZp ¼ 0 (20a)

or

Y p0 þ ðl
2
p � 1ÞZp ¼ 0, (20b)
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where

lp ¼ ō=op (21)

with

op ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kp=mp

q
. (22)

In the last expressions, xp0 is the coordinate of station p0 and op defined by Eq. (22) denotes the natural
frequency of the pth spring–mass system with respect to the static beam.

Substituting Eqs. (8)–(11) into Eqs. (19a)–(19d), one obtains

Cp0�1;1 sin Oxp0 þ Cp0�1;2 cos Oxp0 þ Cp0�1;3 sinh Oxp0 þ Cp0�1;4 cosh Oxp0

� Cp0;1 sin Oxp0 � Cp0;2 cos Oxp0 � Cp0;3 sinh Oxp0 � Cp0;4 cosh Oxp0 ¼ 0 ð23aÞ

Cp0�1;1 cos Oxp0 � Cp0�1;2 sin Oxp0 þ Cp0�1;3 cosh Oxp0 þ Cp0�1;4 sinh Oxp0

� Cp0;1 cos Oxp0 þ Cp0;2 sin Oxp0 � Cp0;3 cosh Oxp0 � Cp0;4 sinh Oxp0 ¼ 0, ð23bÞ

� Cp0�1;1 sin Oxp0 � Cp0�1;2 cos Oxp0 þ Cp0�1;3 sinh Oxp0 þ Cp0�1;4 cosh Oxp0

þ Cp0;1 sin Oxp0 þ Cp0;2 cos Oxp0 � Cp0;3 sinh Oxp0 � Cp0;4 cosh Oxp0 ¼ 0 ð23cÞ

� Cp0�1;1 cos Oxp0 þ Cp0�1;1 sin Oxp0 þ Cp0�1;1 cosh Oxp0 þ Cp0�1;1 sinh Oxp0 þ m̂pOZp

þ Cp0;1 cos Oxp0 � Cp0;2 sin Oxp0 � Cp0;3 cosh Oxp0 � Cp0;4 sinh Oxp0 ¼ 0. ð23dÞ

The substitution of Eq. (8) into Eq. (20b) leads to

Cp0;1 sin Oxp0 þ Cp0;2 cos Oxp0 þ Cp0;3 sinh Oxp0 þ Cp0;4 cosh Oxp0 þ ðl
2
p � 1ÞZp ¼ 0. (23e)

Writing Eqs. (23a)–(23e) in matrix form, one obtains

½Bp0 �fCp0 g ¼ 0, (24)

where

(25)

fCp0 g ¼ fCp0�1;1 Cp0�1;2 Cp0�1;3 Cp0�1;4 Cp0;1 Cp0;2 Cp0;3 Cp0;4 Zp g. (26)

The symbols appearing in Eq. (25) are defined by

yp0 ¼ Oxp0 ; syp0 ¼ sin Oxp0 ; cyp0 ¼ cos Oxp0 ; shyp0 ¼ sinh Oxp0 ; chyp0 ¼ cosh Oxp0 . (27)

Similarly, if the station numbering corresponding to the (r)th intermediate support is represented by r0, then
the continuity of deformations and equilibrium of moments and forces require that

Y L
r0 ðxr0 Þ ¼ Y R

r0 ðxr0 Þ ¼ 0, (28a,b)

Y 0
L
r0 ðxr0 Þ ¼ Y 0

R
r0 ðxr0 Þ, (28c)

Y 00
L
r0 ðxr0 Þ ¼ Y 00

R
r0 ðxr0 Þ (28d)
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with

xr0 ¼
xr0

‘
, (29)

where xr0 is the coordinate of station r0 at which the (r)th intermediate support is located.
Introducing Eqs. (8)–(11) into Eqs. (28), one obtains

Cr0�1;1 sin Oxr0 þ Cr0�1;2 cos Oxr0 þ Cr0�1;3 sinh Oxr0 þ Cr0�1;4 cosh Oxr0 ¼ 0, (30a)

Cr0;1 sin Oxr0 þ Cr0;2 cos Oxr0 þ Cr0;3 sinh Oxr0 þ Cr0;4 cosh Oxr0 ¼ 0, (30b)

Cr0�1;1 cos Oxr0 � Cr0�1;2 sin Oxr0 þ Cr0�1;3 cosh Oxr0 þ Cr0�1;4 sinh Oxr0

� Cr0;1 cos Oxr0 þ Cr0;2 sin Oxr0 � Cr0;3 cosh Oxr0 � Cr0;4 sinh Oxr0 ¼ 0, ð30cÞ

� Cr0�1;1 sin Oxr0 � Cr0�1;2 cos Oxr0 þ Cr0�1;3 sinh Oxr0 þ Cr0�1;4 cosh Oxr0

þ Cr0;1 sin Oxr0 þ Cr0;2 cos Oxr0 � Cr0;3 sinh Oxr0 � Cr0;4 cosh Oxr0 ¼ 0 ð30dÞ

or

½Br0 �fCr0 g ¼ 0, (31)

where

(32)

fCr0 g ¼ fCr0�1;1 Cr0�1;2 Cr0�1;3 Cr0�1;4 Cr0;1 Cr0;2 Cr0;3 Cr0;4 g, (33)

where

yr0 ¼ Oxr0 ; syr0 ¼ sin Oxr0 ; cyr0 ¼ cos Oxr0 ; shyr0 ¼ sinh Oxr0 ; chyr0 ¼ cosh Oxr0 . (34)

From Fig. 1, one sees that the right-end support (i.e., station N0) of the beam is pinned, thus the boundary
conditions are

Y N 0 ð‘Þ ¼ Y 00N0 ‘ð Þ ¼ 0. (35a,b)

Substituting Eqs. (8) and (10) into Eqs. (35) gives

CN 0;1 sin Oþ CN 0;2 cos Oþ CN0;3 sinh Oþ CN 0;4 cosh O ¼ 0, (36a)

�CN 0;1 sin O� CN 0;2 cos Oþ CN 0;3 sinh Oþ CN0;4 cosh O ¼ 0 (36b)

or

½BN 0 �fCN0 g ¼ 0, (37)

where

4N 0i þ 1 4N 0i þ 2 4N 0i þ 3 4N 0i þ 4

½BN 0 � ¼
sin O cos O sinh O cosh O

� sin O � cos O sinh O cosh O

" #
q� 1

q
, ð38Þ

fCN 0 g ¼ fCN0;1 CN0;2 CN0;3 CN0;4 g. (39)
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In Eq. (38), N 0i denotes the total number of intermediate stations given by (cf. Fig. 1)

N 0i ¼ N 0 � 2 (40a)

with

N 0 ¼ S þ T (40b)

and q denotes the total number of equations for the integration constants given by

q ¼ 4ðT � 2Þ þ 5S þ 4. (41)

From the above derivations one sees that one may obtain four equations from each intermediate station at
which a pinned support is located, five equations from each intermediate station at which a spring–mass
system is located and two equations from either the left-end station or the right-end station of the beam.
Therefore, the total number of equations for the integration constants is q ¼ 4ðT � 2Þ þ 5S þ 4. Note that, in
Eq. (40), N0 is the total number of stations as one may see from Fig. 1.

The integration constants relating to the left-end support (i.e., station 10) and those relating to the right-end
support (i.e., station N0) of the beam are determined by Eqs. (16) and (37), respectively, while those relating to
the intermediate stations (i.e., stations 2 to N0�1) are determined by Eqs. (24) or (31) depending upon the
spring–mass system or pinned support being located there. The associated coefficient matrices are given by
½B10 �; ½Bp0 �; ½Br0 � and ½BN 0 � as one may see from Eqs. (17), (25), (32) and (38), respectively. From the last four
equations one may see that the identification number for each element of the last four coefficient matrices is
shown on the top side and right side of each matrix. Therefore, using the numerical assembly technique as
done by the conventional finite element method (FEM) one may obtain a matrix equation for all the
integration constants of the entire beam

½B̄�fC̄g ¼ 0. (42)

Non-trivial solution of Eq. (42) requires that

jB̄j ¼ 0, (43)

which is the frequency equation for the present problem.
In this paper, the half-interval method [14–16] is used to find the natural frequencies of the multi-span beam

carrying multiple spring–mass systems, ōiði ¼ 1; 2; . . .Þ. For each natural frequency ōi, one may obtain the
corresponding integration constants from Eq. (42). The substitution of the last integration constants into
the displacement functions of the associated beam segments will determine the corresponding mode shape of
the beam, Y ðiÞðxÞ. For reference, the overall coefficient matrix ½B̄� for a two-span uniform beam with one
intermediate spring–mass system (or a pinned–pinned uniform beam with one intermediate pinned support
and one intermediate spring–mass system) is shown in the appendix.

The lowest several natural frequencies ōiði ¼ 1; 2; . . .Þ are determined as follows: For the first step, a trial
dimensionless frequency coefficient value of O ¼ Or is assumed and the numerical values of all coefficients
B̄k‘ðk; ‘ ¼ qÞ of the determinant jB̄jq�q corresponding to Orðr ¼ 1; 2; 3; . . .Þ are calculated. Once the values of
B̄k‘ðk; ‘ ¼ qÞ are obtained, one may determine the value of jB̄jq�q using the computer subroutine for
determinant and let Dr ¼ jB̄ðOrÞjq�q. For the next step, a new trial value, O ¼ Orþ1 ¼ Or þ DO with DO
representing the increment of O, is assumed, and the same calculations are repeated to determine the new value
of determinant corresponding to Or+1, i.e., Drþ1 ¼ jB̄ðOrþ1Þjq�q. If Dr and Dr+1 have opposite signs, then
there is at least one dimensionless frequency coefficient in the interval ðOr;Orþ1Þ. In order to avoid missing
some dimensionless frequency coefficient, the increment DO should be small enough. If the increment DO is
small enough (e.g., DO ¼ 0.01), it is likely to contain only one dimensionless frequency coefficient Ō. Because
one can obtain only one value of dimensionless frequency coefficient each time Dr and Dr+1 have opposite
signs, one needs to continue the above-mentioned procedures until the entire lowest several intervals are
obtained. After finding all intervals, accurate values of Ōi are calculated respectively using the well-known
half-interval method [14–16]. Besides, checking with the results of FEM is also used to ensure no natural
frequencies ōi being missed in this paper. It is noted that the relationship between Oið¼ ŌiÞ and ōi is given by
Eqs. (13) and (6b).
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4. Numerical results and discussions

Before the free vibration analysis of a multi-span uniform beam carrying multiple spring–mass systems is
performed, the reliability of the theory and the computer program developed for this paper are confirmed by
comparing the present results with those obtained from the existing literature or the conventional FEM.
Unless particularly mentioned, all the numerical results of this paper are obtained based on a uniform
Euler–Bernoulli beam with the following given data: Young’s modulus E ¼ 2.069� 1011N/m2, diameter
d ¼ 0.05m, moment of inertia of the cross-sectional area I ¼ 3.06796� 10�7m4, mass per unit length m̄ ¼

15:3875 kg=m and total length ‘ ¼ 1m, total mass mb ¼ m̄‘ ¼ 15:3875 kg, reference spring constant
kb ¼ EI=‘3 ¼ 6:34761� 104 N=m. For convenience, two non-dimensional parameters, m̂p and k̂p, are
introduced, they are defined by m̂p ¼ mp=mb and k̂p ¼ kp=kb. Besides, in FEM, the two-node beam elements
are used and the entire continuous beam is subdivided into 40 beam elements. Since each node has two degrees
of freedom (dofs), the total dof for the entire unconstrained beam is 2(40+1) ¼ 82.

4.1. Reliability of the developed computer program

For convenience, in this paper, the pinned–pinned beam is called a ‘‘bare’’ beam if it does not carry any
spring–mass systems and is called a ‘‘loaded’’ beam if it carries any number of spring–mass systems. The first
example (see Fig. 2) studied is the uniform single-span pinned–pinned beam carrying one to five intermediate
spring–mass systems. Table 1 shows the natural frequencies of the five spring–mass systems with respect to the
static beam defined by Eq. (22), op (rad/s), with the subscript p denoting the numbering of five spring–mass
systems, and m̂p ¼ mp=mb and k̂p ¼ kp=kb (p ¼ 1 to 5) denoting the associated non-dimensional lumped
masses and spring constants, respectively. Table 2 shows the lowest five natural frequencies of the ‘‘loaded’’
beam for three cases: (1) The 1st spring–mass system (i.e., p ¼ 1) of Table 1 is attached on the beam at
x�p ¼ x�p=‘ ¼ 0:75; (2) The 1st, 3rd and 5th spring–mass systems (i.e., p ¼ 1, 3, 5) of Table 1 are attached at
x�p ¼ 0:1, 0.4 and 0.8, respectively; (3) The 1st, 2nd, 3rd, 4th and 5th spring–mass systems (i.e., p ¼ 1 to 5) are
attached at x�p ¼ 0:1, 0.2, 0.4, 0.6 and 0.8, respectively. The lowest five natural frequencies of the loaded beam
for the last three cases are listed in the 1st, 3rd and 5th rows of results of Table 2, respectively, and the
corresponding ones obtained from Ref. [11] are listed in the 2nd, 4th and 6th rows of results of Table 2.
For comparison, the lowest five ‘‘exact’’ natural frequencies of the single-span ‘‘bare’’ pinned–pinned
beam, obi (i ¼ 1 to 5), are also presented next Table 2: 633.9001, 2535.6003, 5705.1007, 10142.4012,
15847.5019 rad/s. From Table 2 one sees that the results of this paper are in good agreement with those of
Ref. [11]. Furthermore, from Tables 1 and 2 one sees that ō1 ¼ 243:8580 � o1 ¼ 248:7521 rad=s for case (1),
0
x

y

m1

k3

m3 m5

k5k1

*x3

*x1

*x5
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m4
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k4k2

*x2
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Fig. 2. A single-span pinned–pinned beam carrying five intermediate spring–mass systems with m̂p ¼ mp=mb and k̂p ¼ kp=kb located at x�p,

p ¼ 1 to 5.
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ō1 ¼ 152:7341 � o5 ¼ 157:3246 rad=s, ō2 ¼ 185:0951 � o3 ¼ 192:6825 rad=s and ō3 ¼ 247:8314 � o1 ¼

248:7521 rad=s for case (2), and ōi � o6�i (i ¼ 1 to 5) for case (3). In other words, the lowest p natural
frequencies of the loaded beam, ōpðp ¼ 1; 2; 3; . . .Þ, are very close to the natural frequencies of the attached p

spring–mass systems with respect to the static beam, opðp ¼ 1; 2; 3; . . .Þ. It is also seen that ōi � ob;i�1 with
i ¼ 2 to 5 for case (1) and ōi � ob;i�3 with i ¼ 4,5 for case (2), where obi denotes the ith natural frequency of
the ‘‘bare’’ beam listed next Table 2.
Table 1

Natural frequencies of the five spring–mass systems with respect to the static beam, op (rad/s), respectively

Numbering, p 1 2 3 4 5

m̂p ¼ mp=mb 0.2 0.3 0.5 0.65 1.0

k̂p ¼ kp=kb
3.0 3.5 4.5 5.0 6.0

op ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
kp=mp

p
248.7521 219.3787 192.6825 178.1351 157.3246

Table 2

Influence of the spring–mass systems shown in Table 1 on the lowest five natural frequencies of the single-span pinned–pinned beam shown

in Fig. 2

Cases Locations x�P ¼ x�p=‘ Methods Natural frequencies, ōi (rad/s)

ō1 ō2 ō3 ō4 ō5

1 0.75 (p ¼ 1) Present 243.8577 645.2028 2540.5298 5706.1880 10142.4002

Ref. [11] 243.8579 645.2030 2540.5306 5706.1886 10142.4012

2 0.1, 0.4, 0.8 (p ¼ 1, 3, 5) Present 152.7339 185.0949 247.8313 677.5959 2548.6572

Ref. [11] 152.7341 185.0950 247.8314 677.5961 2548.6577

3 0.1, 0.2, 0.4, 0.6, 0.8 (p ¼ 1 to 5) Present 150.9571 169.4728 187.9146 217.1278 247.9867

Ref. [11] 150.9571 169.4729 187.9147 217.1279 247.9868

Note: the lowest five ‘‘exact’’ natural frequencies of the single-span ‘‘bare’’ pinned–pinned beam, obi (i ¼ 1 to 5), are 633.9001, 2535.6003,

5705.1007, 10142.4012, 15847.5019 rad/s.
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Fig. 3. The lowest five mode shapes of a uniform single-span pinned–pinned beam carrying three intermediate spring–mass systems with

(m̂1 ¼ 0:2, k̂1 ¼ 3:0), (m̂3 ¼ 0:5, k̂3 ¼ 4:5) and (m̂5 ¼ 1:0, k̂5 ¼ 6:0) located at x�1 ¼ x�1=‘ ¼ 0:1, x�3 ¼ 0:4 and x�5 ¼ 0:8, respectively.
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The lowest five mode shapes of the loaded beam for case (2) are shown in Fig. 3. In which, the 1st, 2nd, 3rd,
4th and 5th mode shapes are represented by the curves. - - - -, —–—, ———, ———, and — �— � ,
respectively. It is seen that the lowest three mode shapes take the same form and are similar to the 4th one, this
is because the 4th natural frequency of the loaded beam is very close to the 1st one of the ‘‘bare’’ beam (i.e.,
ō4 ¼ 677:5963 � ob1 ¼ 633:9030 rad=s) and so is the corresponding mode shapes, in addition, the 1st, 2nd
and 3rd mode shapes of the loaded beam are related to the free vibrations of the three spring–mass systems
with respect to the static beam, respectively. It is evident that the 5th mode shape of the loaded beam as shown
in Fig. 3 will be very close to the 2nd mode shape of the bare beam, because ō5 ¼ 2548:6581 � ob2 ¼

2535:6119 rad=s.
4.2. Free vibration analysis of a two-span beam carrying one spring– mass system

In the last subsection, the pinned–pinned beam is single-span and is attached by one to five intermediate
spring–mass systems. However, the beam studied in this subsection is two-span (pinned at its two ends
and at x̄1 ¼ x̄1=‘ ¼ 0:4) and carries one intermediate spring–mass system at x�1 ¼ 0:75 as shown in Fig. 4.
The non-dimensional magnitude of the lumped mass is m̂1 ¼ m1=mb ¼ 0:2 and that of the spring
constant is k̂1 ¼ k1=kb ¼ 3:0. For reference, the explicit form of the overall coefficient matrix [B] for the
present example is given in the appendix at the end of this paper. Although it is only a 13� 13 square matrix, it
is too complicated to be listed. The lowest five natural frequencies of the ‘‘loaded’’ beam are shown in the
1st row of results of Table 3 and the associated mode shapes are plotted in Fig. 5. For comparison, the
lowest five natural frequencies of the ‘‘bare’’ beam (i.e., p ¼ 0) are also listed in the 3rd row of results
of Table 3. In Fig. 5, the 1st, 2nd, 3rd, 4th and 5th mode shapes are represented by the curves, ...............,
—–—, ———, ———, and – � – � – � , respectively. It is seen that the 1st mode shape and the 2nd one
take the same form. It is similar to the single-span beam studied in the last subsection that ō1 ¼ 248:1408 �
o1 ¼ 248:7521 rad=s and ōi � ob;i�1 for i ¼ 2 to 5, where ōi denotes the ith natural frequency of ‘‘loaded’’
0 x

y

l

*x1 = 0.75l

m1x1 = 0.4l

k1

Fig. 4. A uniform two-span pinned–pinned beam (with one intermediate support at x̄1 ¼ x̄1=‘ ¼ 0:4 ¼ 0.4) carrying one intermediate

spring–mass system with m̂1 ¼ 0:2 and k̂1 ¼ 3:0 located at x�1 ¼ x�1=‘ ¼ 0:75.

Table 3

Influence of the intermediate spring–mass system on the lowest five natural frequencies of the two-span pinned–pinned beam shown

in Fig. 4

No. of spring–mass system, p Methods Natural frequencies (rad/s)

ō1 ðor ob1Þ ō2 ðor ob2Þ ō3 ðor ob3Þ ō4 ðor ob4Þ ō5 ðor ob5Þ

1 Present 247.6358 2156.8778 4938.1451 8220.1624 15847.8928

FEM 247.6360 2156.8780 4938.1520 8220.1982 15848.1531

0 Present 2147.6735 4937.5110 8219.9705 15847.5054 19288.5388

FEM 2147.6740 4937.5168 8220.0047 15847.7625 19289.0078

Note: ōi denotes the ith natural frequency of ‘‘loaded’’ beam and obi denotes that of the ‘‘bare’’ beam.
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beam and obi denotes that of ‘‘bare’’ beam. In addition to the results of the present NAM, those of the FEM
are also given in the 2nd and 4th rows of results of Table 3. It is seen that good agreement between the
corresponding results is achieved.
4.3. Free vibration analysis of a three-span beam carrying three spring– mass systems

In this subsection, a three-span pinned–pinned beam carrying three intermediate spring–mass systems as
shown in Fig. 6 is studied. The locations of the two intermediate pinned supports are at x̄1 ¼ 0:3‘ and
x̄2 ¼ 0:7‘, while those of the three spring–mass systems are at x�1 ¼ 0:1‘, x�2 ¼ 0:4‘ and x�3 ¼ 0:8‘. The non-
dimensional magnitudes of the three lumped masses are m̂1 ¼ 0:2, m̂2 ¼ 0:3 and m̂3 ¼ 0:5, while those
of the three spring constants are k̂1 ¼ 3:0, k̂2 ¼ 3:5 and k̂3 ¼ 4:5, respectively. The lowest five natural
frequencies of the loaded beam are shown in the 1st and 2nd rows of Table 4 and the associated mode shapes
are shown in Fig. 7. In the last figure, the 1st, 2nd, 3rd, 4th and 5th mode shapes are represented by the curves,
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Fig. 5. The lowest five mode shapes of a two-span uniform pinned–pinned beam (with one intermediate support located at

x̄1 ¼ x̄1=‘ ¼ 0:4) carrying one intermediate spring–mass system with m̂1 ¼ 0:2 and k̂1 ¼ 3:0 located at x�1 ¼ x�1=‘ ¼ 0:75.
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Fig. 6. A three-span pinned–pinned beam (with two intermediate supports at x̄1 ¼ 0:3‘ and x̄2 ¼ 0:7‘) carrying three intermediate

spring–mass systems located at x�1 ¼ 0:1‘, x�2 ¼ 0:4‘ and x�3 ¼ 0:8‘.
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Fig. 7. The lowest five mode shapes of a three-span pinned–pinned beam (with two intermediate supports at x̄1 ¼ 0:3‘ and x̄2 ¼ 0:7‘)
carrying three intermediate spring–mass systems located at x�1 ¼ 0:1‘, x�2 ¼ 0:4‘ and x�3 ¼ 0:8‘. The non-dimensional magnitudes of the

three spring–mass systems are m̂1 ¼ 0:2, m̂2 ¼ 0:3, m̂3 ¼ 0:5 and k̂1 ¼ 3:0, k̂2 ¼ 3:5, k̂3 ¼ 4:5.

Table 4

Influence of the three intermediate spring–mass systems on the lowest five natural frequencies of the three-span pinned–pinned beam

shown in Fig. 6

No. of spring–mass system, p Methods Natural frequencies (rad/s)

ō1 ðor ob1Þ ō2 ðor ob2Þ ō3 ðor ob3Þ ō4 ðor ob4Þ ō5 ðor ob5Þ

3 Present 192.5522 219.2418 248.6207 5252.5167 8595.0801

FEM 192.5523 219.2419 248.6207 5252.5272 8595.1228

0 Present 5248.1555 8590.6934 10305.8151 19750.4270 30163.2250

FEM 5248.1650 8590.7350 10305.8870 19750.5396 30163.4182

Note: ōi denotes the ith natural frequency of ‘‘loaded’’ beam and obi denotes that of ‘‘bare’’ beam.
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..............., — –—, ———, ——— and – � – � – � , respectively. From Table 4, one sees that the values of
ōiði ¼ 1 to 5Þ obtained from the present method (NAM) shown in 1st row of results are very close to the
corresponding ones obtained from FEM shown in 2nd row of results. From Tables 4 and 1, one also sees that
the lowest three natural frequencies of the loaded beam as shown in Fig. 6 are very close the associated natural
frequencies of the three attached spring–mass systems with respect to the static beam, respectively; in addition,
one has ōi � ob;i�3 with i ¼ 4,5, where obi denotes the ith natural frequency of the bare beam (i.e., p ¼ 0) as
one may see from the 3rd and 4th rows of results of Table 4. All the last phenomena agree with those
appearing in the single-span and two-span beams carrying single or multiple spring–mass systems studied in
the previous subsections.

4.4. Free vibration analysis of a four-span beam carrying three spring– mass systems

The four-span beam carrying three spring–mass systems studied in this subsection is shown in Fig. 8,
where the locations of the three intermediate pinned supports are at x̄1 ¼ 0:3‘, x̄2 ¼ 0:5‘, and x̄3 ¼ 0:7‘,
while the locations and the non-dimensional parameters of the three spring–masses systems are exactly
identical to those given in the last Section 4.3. The lowest five natural frequencies of the loaded beam are
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Fig. 8. A four-span pinned–pinned beam (with three intermediate supports at x̄1 ¼ 0:3‘, x̄2 ¼ 0:5‘ and x̄3 ¼ 0:7‘) carrying three

intermediate spring–mass systems located at x�1 ¼ 0:1‘, x�2 ¼ 0:4‘ and x�3 ¼ 0:8‘.

Table 5

Influence of the three intermediate spring–mass systems on the lowest five natural frequencies of the four-span pinned–pinned beam shown

in Fig. 8

No. of spring–mass system, p Methods Natural frequencies (rad/s)

ō1 ðor ob1Þ ō2 ðor ob2Þ ō3 ðor ob3Þ ō4 ðor ob4Þ ō5 ðor ob5Þ

3 Present 192.5744 219.3417 248.6328 8595.0801 9016.0676

FEM 192.5746 219.3419 248.6329 8595.1227 9016.1159

0 Present 8590.6942 9011.9071 19750.4674 26562.3933 32882.0445

FEM 8590.7349 9011.9541 19750.5396 26562.4946 32882.1917

Note: ōi denotes the ith natural frequency of ‘‘loaded’’ beam and obi denotes that of the ‘‘bare’’ beam.
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shown in the 1st and 3rd rows of results of Table 5 and the associated five mode shapes are shown
in Fig. 9. The legend for the curves of Fig. 9 is the same as that of Fig. 7. For comparison, the lowest
five natural frequencies of the ‘‘bare’’ beam (cf. Fig. 8) are also listed in the 2nd and 4th rows of results of
Table 5. From the last table one sees that the values of ōiði ¼ 1 to 5Þ obtained from the present method
(NAM) shown in the 1st and 3rd rows of results are very close to the corresponding ones obtained from
FEM shown in the 2nd and 4th rows of results. It is similar to the one-span to three-span beams
carrying multiple spring–mass systems studied in the previous subsections that the lowest three natural
frequencies of the loaded beam shown in the 1st and 2nd rows of results of Table 5 are very close the
associated natural frequencies of the three spring–mass systems with respect to the static beam shown in the
final row of Table 1, respectively; in addition, one has the relationship ō3þi � obi with i ¼ 1, 2, where obi

denotes the ith natural frequency of the bare beam (i.e., p ¼ 0) as one may see from the 3rd and 4th rows of
results of Table 5. Furthermore, the lowest three mode shapes shown in Fig. 9 take the same form, because all
of them are related to the three spring–mass systems (cf. Table 1) vibrating with respect to the static beam,
respectively.
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Fig. 9. The lowest five mode shapes of a four-span pinned–pinned beam (with three intermediate supports at x̄1 ¼ 0:3‘, x̄2 ¼ 0:5‘ and
x̄3 ¼ 0:7‘) carrying three intermediate spring–mass systems located at x̄3 ¼ 0:1‘, x�2 ¼ 0:4‘ and x�3 ¼ 0:8‘. The non-dimensional

magnitudes of the three spring–mass systems are m̂1 ¼ 0:2, m̂2 ¼ 0:3, m̂3 ¼ 0:5 and k̂1 ¼ 3:0, k̂2 ¼ 3:5, k̂3 ¼ 4:5.
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It is noted that the total number of intermediate stations for the present example is Ni ¼ 6, including
three intermediate spring–mass systems (i.e., S ¼ 3) and three intermediate supports (i.e., T�2 ¼ 3).
Thus, according to Eq. (41), the total number of equations for the integration constants is
q ¼ 4(T�2)+5S+4 ¼ 31. In other words, the order of the overall coefficient matrix [B] is 31� 31. For the
uniform pinned–pinned beam with one intermediate pinned support and one intermediate spring–mass
system as shown in Fig. 4, its overall coefficient matrix [B] is a 13� 13 square matrix given in the
appendix of this paper. Since it is too lengthy to write the last explicit-form 13� 13 overall coefficient matrix
[B], the classical explicit analytical methods will suffer much more difficulty for writing the explicit-form
31� 31 overall coefficient matrix [B] and calculating the value of associated determinant |B| for the present
example.
5. Conclusions

In general, the accuracy of a numerical method is evaluated by comparing its numerical result with the
associated ‘‘exact’’ solution. The free vibration analysis of a multi-span beam carrying multiple intermediate
spring–mass systems is a practical problem in engineering, but its exact solution for the natural frequencies
and mode shapes is not obtained yet. Thus, the information presented in this paper will be significant in this
aspect.

For a single-span pinned–pinned beam, if the natural frequency of each spring–mass system with
respect to the static beam, op, is smaller than the fundamental frequency of the bare beam, ob1, then
the lowest p natural frequencies of the loaded beam, ōpðp ¼ 1; 2; 3; . . .Þ, will be very close to the associated
natural frequencies of the attached p spring–mass systems, opðp ¼ 1; 2; 3; . . .Þ, respectively. In such a case,
one has the relationship ōpþi � obi for i ¼ 1, 2, 3,y, where p denotes the total number of spring–mass
systems attached and obi denotes the ith natural frequency of the ‘‘bare’’ beam (i.e., a beam without any
spring–mass systems attached). Because the lowest p natural frequencies of the loaded beam,
ōpðp ¼ 1; 2; 3; . . .Þ, are very close to the associated natural frequencies of the p spring–mass systems with
respect to the static beam, op, respectively, their mode shapes (i.e., the corresponding deformations of the
loaded beam) take the same form.

From the numerical results of this paper it is found that the last conclusion drawn from the single-span
beam is also available for the multi-span beam carrying multiple spring–mass systems.
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Appendix

The overall coefficient matrix [B] for a uniform pinned–pinned beam with one intermediate pinned support
and one intermediate spring–mass system is found to be

B̄
� �
¼

0 1 0 1 0 0 0 0 0 0 0 0 0

0 �1 0 1 0 0 0 0 0 0 0 0 0

sy1 cy1 shy1 chy1 0 0 0 0 0 0 0 0 0

0 0 0 0 sy1 cy1 shy1 chy1 0 0 0 0 0

cy1 �sy1 chy1 shy1 �cy1 sy1 �chy1 �shy1 0 0 0 0 0

�sy1 �cy1 shy1 chy1 sy1 cy1 �shy1 �chy1 0 0 0 0 0

0 0 0 0 sy�1 cy�1 shy�1 chy�1 �sy�1 �cy�1 �shy�1 �chy�1 0

0 0 0 0 cy�1 �sy�1 chy�1 shy�1 �cy�1 sy�1 �chy�1 �shy�1 0

0 0 0 0 �sy�1 �cy�1 shy�1 chy�1 sy�1 cy�1 �shy�1 �chy�1 0

0 0 0 0 �cy�1 sy�1 chy�1 shy�1 cy�1 �sy�1 �chy�1 �shy�1 m̂1O

0 0 0 0 sy�1 cy�1 shy�1 chy�1 0 0 0 0 l21 � 1

0 0 0 0 0 0 0 0 sO cO shO chO 0

0 0 0 0 0 0 0 0 �sO �cO shO chO 0

2
666666666666666666666666664

3
777777777777777777777777775

,

where sO ¼ sin O, cO ¼ cos O, shO ¼ sinh O, chO ¼ cosh O, sy1 ¼ sin y1, cy1 ¼ cos y1, shy1 ¼ sinh y1,
chy1 ¼ cosh y1, y1 ¼ Ox̄1, x̄1 ¼ x̄1=‘, sy�1 ¼ sin y�1, cy�1 ¼ cos y�1, shy�1 ¼ sinh y�1, chy�1 ¼ cosh y�1, y

�
1 ¼ Ox�1,

x�1 ¼ x�1=‘, l1 ¼ ō=o1, o1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k1=m1

p
, ō ¼ ðOÞ2ðEI=m̄‘4Þ1=2.
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